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Abstract—This paper presents a method for effectively using unlabeled sequential data in the learning of hidden Markov models

(HMMs). With the conventional approach, class labels for unlabeled data are assigned deterministically by HMMs learned from labeled

data. Such labeling often becomes unreliable when the number of labeled data is small. We propose an extended Baum-Welch (EBW)

algorithm in which the labeling is undertaken probabilistically and iteratively so that the labeled and unlabeled data likelihoods are

improved. Unlike the conventional approach, the EBW algorithm guarantees convergence to a local maximum of the likelihood.

Experimental results on gesture data and speech data show that when labeled training data are scarce, by using unlabeled data, the

EBW algorithm improves the classification performance of HMMs more robustly than the conventional naive labeling (NL) approach.

Index Terms—Unlabeled data, sequential data, hidden Markov models, extended Baum-Welch algorithm.
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1 INTRODUCTION

ONEmajor problem in designing classifiers is the scarcity
of training data. Usually, a classifier is trained on pairs

of observed feature vectors and their class labels. Such a
framework is called supervised learning. In most cases,
class labels are manually assigned by experts. Therefore, it
is expensive and time consuming to collect large amounts of
labeled data. Because of this labeling cost, data is often
scarce in practice. Consequently, the designed classifier
becomes unreliable and its generalization performance
becomes poor [1], especially in nonlinear models.

To overcome this problem in supervised learning, a new
learning scheme called semisupervised learning has been
proposed in which unlabeled data are also used to train
classifiers. Since unlabeled data can be easily collected
without labeling efforts, semisupervised learning has
attracted classifier designers and has been studied in
various applications for both static data [2], [3], [4], [5], [6]
and sequential data [7], [8]. It was reported that the
classifiers learned from both labeled and unlabeled data
could achieve better classification performance than those
learned from small amounts of labeled data.

In this paper, we focus on semisupervised learning for
hidden Markov models (HMMs). HMMs are stochastic state
transition models that have been extensively used in two
types of applications. The first one is concerned with
classification of sequences in speech recognition (e.g., [9]),
in gesture recognition (e.g., [10]), in computational biology
(e.g., [11]), etc. In these tasks, given a sequence, HMMs
assign a class label to the entire sequence. The second type

deals with the determination of state sequences given
observation sequences. Examples of this type of application
include part of speech tagging in natural language proces-
sing (e.g., [12]) and named entity extraction in information
extraction (e.g., [13]). In the second type of application, the
term “labeled data” means the observed sequences with the
state sequence information associated with them, while the
term “unlabeled data” means the sequences without the
state sequence information [14], [15], [16]. That is, the
second one is concerned with “partially hidden data” which
are not “unlabeled data” in the sense used for the
semisupervised learning for static data. Such “partially
hidden data” of the second application type can be
processed by the standard learning framework of HMMs
and, in this paper, we investigate the “unlabeled data” in
the first type of application, the classification of sequences.

For the first applications, a simple semisupervised
learning scheme has been used, which we refer to as the
naive labeling (NL) approach [7], [8]. With the NL approach,
HMMs are first trained solely on given labeled data. Then,
pseudoclass labels are deterministically assigned to unlabeled
data by classifying them using the trained HMMs. The
HMMs are retrained with these newly labeled data.

The NL approach appears to be a method for classifier
adaptation under the assumption that the initial model is to
some extent reliable. In the above two studies where the
quantities of initial labeled data were relatively large, the
NL approach could improve the HMMs. This applies to the
case when training HMMs used in speech recognition
systems for adaptation. However, when trained on small
amounts of labeled data, initial models become unreliable
and, therefore, the pseudolabels also become unreliable. As
a result, the addition of unlabeled data with such unreliable
labels may not improve the generalization performance of
the HMM.

To overcome this problem associated with the NL
approach, in this paper, we present a new semisupervised
learning approach that can use unlabeled data for training
HMMs more effectively than the NL approach. In our
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approach, as with [3], [4], [5], [6], the class labels are treated
as missing information and the pseudoclass labels are

probabilistically assigned to unlabeled data so that the joint
likelihood function for both labeled and unlabeled data is
maximized. To handle unlabeled data, we introduce

extended tied-mixture HMMs (ETM-HMMs) as a mixture
of tied-mixture HMMs (TM-HMMs) [17], [18]. For training
ETM-HMMs, we derive an extended Baum-Welch (EBW)

algorithm. Unlike the NL approach, the proposed algorithm
theoretically guarantees convergence to a local maximum of

the likelihood.
The EBW algorithm can be regarded as an extension of

the conventional labeling approach for static data based on
the EM algorithm [19] to the one for sequential data.

Although the usefulness of static unlabeled data has been
claimed, the usefulness of sequential unlabeled data in such

approach has not been shown. We presented an outline of
our approach in a previous paper [20]. In the present paper,
we formally explain the EBW algorithm and empirically

compare it with the NL approach.
The rest of the paper is organized as follows: After the

formal definition of labeled and unlabeled data in Section 2,

the conventional NL approach is explained in Section 3.
Section 4 briefly reviews TM-HMMs and introduces ETM-
HMMs. Next, the EBW algorithm is presented in Section 5.

Section 6 provides some experimental results using gesture
and speech data in which the effect of unlabeled data in our
method is evaluated and compared with the NL approach.

Section 7 concludes the paper.

2 LABELED AND UNLABELED DATA

Let Xn ¼ hxn1
;xn2

; . . . ;xnt
; . . . ;xnTn

i be the nth observation

sequence of d-dimensional feature vectors, where xnt
2 Rd is

the tth feature vector in Xn and Tn is the length of the
sequence Xn. Let yn be a class label corresponding to Xn.

yn 2 f1; . . . ; y; . . . ; Y g, where Y is the number of classes.
Thus, a labeled datum is ðXn; ynÞ and an unlabeled datum

is Xn. Let Dl be a labeled data set and Du be an unlabeled
data set. It is assumed that we have D ¼ Dl [ Du. In
addition, we assume that data are mutually independent.

In the above definition, a single label is assigned to each

of the observed sequences. Many types of sequence meet
the above definition. For example, physiological sequences
such as brain waves, biological sequences such as gene

expression profiles, and economic time series data such as
the trend of unemployment. For some types of sequence, on

the other hand, another definition of labeled sequences is
sometimes used: An observed sequence corresponds to
several concatenated labels. For example, continuous

speech recognition systems that regard each phoneme as a
class deal with spoken sentences as such sequences. For

these settings, however, together with segmentation algo-
rithms such as [21], the concatenated sequences may be
dealt with as the basic sequences defined above. In this

paper, with the aim of evaluating the proposed algorithm,
we consider only the basic sequences where there is a one-
to-one correspondence between a sequence of feature

vectors and a class label.

3 NAIVE LABELING APPROACH

First, we review the conventional NL approach that utilizes

unlabeled data straightforwardly. Assume that relatively

small amounts of data have been manually labeled and vast

amountsofunlabeleddata are accessible. In theNLapproach,

using the hand-labeled data, a partially correct initial model

is trained. The remaining unlabeled data are labeled based on

the initial model. Once unlabeled data have been given

pseudolabels, they can be regarded as labeled data. Then, the

model can be retrained by using conventional supervised

learning algorithms.
Let D0l be a pseudolabeled data set whose labels are

generated by the initial model. Then, the NL approach can

be summarized as follows:

Step 1: Initialization

1-1. Set D  Dl.

1-2. Train a model (classifier) using D.

Step 2: Retraining

Repeat the following several times:

2-1. Based on the current model, assign a pseudolabel to

each datum in Du and generate D0l.
2-2. Set D  Dl [ D0l.
2-3. Retrain the model using D.

The above algorithm gives the most general form of the

NL approach. However, since the NL approach has been

developed independently for various applications, some

variants and extensions exist. For example, in [2], D0l was

used and Dl was not used in retraining, and in [7], Step 2

was executed just once. However, such differences do not

seem to be essential. Therefore, in this paper, we use the

general algorithm given above.
Although the NL approach has been reported to be

effective in practice, it has two fundamental drawbacks.

First, the convergence of Step 2 is not guaranteed. There-

fore, should the retraining procedure not converge, we

should stop the retraining cycle based on some heuristic

criterion such as the maximum number of retraining cycles.

Second, when the initial model is unreliable, the unlabeled

data cannot be effectively used. Since Dl in Step 1-1 is often

small, the initial model may be poorly trained; thus, a

substantial percentage of pseudolabels assigned by such

models may be wrong. If D0l contains many erroneous data,

their addition may deteriorate the performance of the

classifier.
Confidence measures for labeling have been introduced

to cope with the second problem [7], [8] so that unreliable

pseudolabeled data whose confidence measures are below a

certain threshold are not included in D. These confidence

measures are defined for individual applications based on

domain knowledge and have been reported to be beneficial

in improving classification. Such measures are, however,

not always available or effective. That is, the success of the

NL approach basically depends on the quality of the initial

model.
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4 TM-HMMs AND ETM-HMMs

4.1 Proposed Algorithm and Model Structure

To overcome the problems associated with the NL
approach, we propose a new algorithm which uses
unlabeled data directly without explicit labeling. By so
doing, we can use both labeled and unlabeled data
simultaneously and expect a better initial estimate of the
model parameters based on the larger amount of training
data. Such methods have been already presented for static
models [3], [4], [5], [6]. However, the structure of conven-
tional HMMs prevents the direct use of these methods. The
static models used in the above researchs include all classes
in a single model and unlabeled data can be used in those
models. In contrast, HMMs are constructed for each class
and all training data must be allocated to the classes before
learning. Therefore, unlabeled data cannot be used unless
pseudolabels are given by a method such as the
NL approach. In Section 4.2, to clarify why unlabeled data
cannot be used in conventional HMMs, we detail the model
structure of conventional HMMs, especially tied-mixture
HMMs (TM-HMMs). In Section 4.3, as an extension of
TM-HMMs, we introduce a model structure named
extended tied-mixture HMMs (ETM-HMMs) that can
handle unlabeled data.

4.2 TM-HMMs

An HMM consists of several states and the probabilistic
transitions between them. With continuous HMMs, each
HMM state outputs a continuous (vector) value according
to the distribution of a mixture of Gaussians. In a TM-HMM
shown in Fig. 1a, each state has a mixture of Gaussians with
shared underlying Gaussian components over all classes,
but different mixing parameters. TM-HMMs are frequently
used because they can reduce the number of model
parameters without losing flexibility [17], [18].

Let TM-HMM(y) be a TM-HMM of class y. Let Uy be the
number of states in TM-HMMðyÞ and K be the number of
Gaussian components in the feature space. Let st 2
f1; . . . ; i; . . . ; j; . . . ; Uyg be the index of the state at time t.1

Let mt 2 f1; . . . ; k; . . . ; Kg be the index of the component at
time t. Let �y ¼ f�y

i ; a
y
ij; c

y
jk; ��k;�kg be the set of parameters

for TM-HMMðyÞ. The definitions of parameters in �y are
listed below.

. Initial state probabilities for 1 � s1 � Uy:

�y
i ¼ P ðs1 ¼ i j yÞ; ð1Þ

where �y
i � 0 and

P
i �

y
i ¼ 1.

. Transition probabilities for 1 � st; stþ1 � Uy:

ayij ¼ P ðstþ1 ¼ j j st ¼ i; yÞ; ð2Þ

where ayij � 0 and
P

j a
y
ij ¼ 1.

. Mixture coefficients for 1 � st � Uy; 1 � mt � K:

cyjk ¼ P ðmt ¼ k j st ¼ j; yÞ; ð3Þ

where cyjk � 0 and
P

k c
y
jk ¼ 1.

. Gaussian parameters (mean vectors and covariance
matrices) for 1 � mt � K:

��k and �k; ð4Þ

where mt ¼ k.

Note that, since all Gaussians are common to all states and
classes, ��k and �k depend neither on i; j nor on y.

Let Sn ¼ fst j t ¼ 1; . . . ; Tng be the sequence of states,
Mn ¼ fmt j t ¼ 1; . . . ; Tng be the sequence of Gaussian
components both of which correspond to Xn. In TM-
HMMðyÞ, Xn is observable and Sn and Mn are unobser-
vable; hence, they are called hidden variables. According to
the definition of �y, when s1 ¼ h, st ¼ i, stþ1 ¼ j, mt ¼ k,
the complete data likelihood of TM-HMMðyÞ is given by:

pðXn; Sn;Mn j �yÞ ¼ �yh

YTn�1

t¼1
ayij
YTn

t¼1
cyikNðxnt

j ��k;�kÞ: ð5Þ

In TM-HMMs, as shown in Fig. 2a, the feature space is tied
over classes and any feature vector can be placed there. In
contrast, since state spaces are defined separately for each
TM-HMMðyÞ, unlabeled data without class labels cannot be
placed in state spaces. Therefore, TM-HMMs cannot use
unlabeled data directly.

4.3 ETM-HMMs

To deal with unlabeled data in state space, we use another
model structure named an ETM-HMM. Let !y be a class
prior. Then, an ETM-HMM can be defined by:

ETM�HMM ¼
XY
y¼1

!yTM�HMMðyÞ: ð6Þ
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1. Since indices i and j represent a state of the HMM for a particular class
(y), they should be written as iy and jy. However, for simplicity of notation,
we omit the superscript y.

Fig. 1. This figure shows a two-class example of (a) a Tied-Mixture HMM
(TM-HMM) and (b) an Extended Tied-Mixture HMM (ETM-HMM). The
circles represent HMM states and the solid arrows represent state
transitions. The black ovals denote feature spaces represented by a
mixture of Gaussians. In (b), !1 and !2 denote class priors for class 1
and class 2, respectively.



That is, an ETM-HMM is defined as a mixture of TM-HMMs

of different classes as shown in Fig. 1b. In an ETM-HMM, as

well as a TM-HMM, a feature space represented by amixture

of Gaussians is tied over all classes. As shown in Fig. 2b, in

ETM-HMMs, unlabeled data can be located in multiple state

spaces with probabilistic weights.
The hidden variables of an ETM-HMM for labeled data

are that for a TM-HMM, and for unlabeled data, class label

yn is also a hidden variable. A set of parameters for an

ETM-HMM � ¼ f!y;�y j y ¼ 1; . . . ; Y g, where �y has been

defined for TM-HMMs in Section 4.2. When s1 ¼ h, st ¼ i,

stþ1 ¼ j, and mt ¼ k, the complete data likelihood for an

ETM-HMM is given by:

pðXn; yn; Sn;Mn j �Þ ¼ !y�
y
h

YTn�1

t¼1
ayij
YTn

t¼1
cyikNðxnt

j ��k;�kÞ:

ð7Þ

Equation (7) differs from (5) in that class prior !y is

introduced and class labels are regarded as random

variables.

5 EXTENDED BAUM-WELCH ALGORITHM

5.1 Q-Function for Mixed Data

This section describes the learning algorithm for the ETM-
HMMs, named the extended Baum-Welch (EBW) algorithm.

The EBW algorithm is an extension of the Baum-Welch (BW)
algorithm [22], which is widely used to train HMMs. The
BW algorithm can be regarded as an application of the
expectation-maximization (EM) algorithm [19] to HMMs.
The EM algorithm is an iterative procedure for computing
maximum likelihood estimates from incomplete data. It
alternates two steps: The Estep computes the expected
complete data log-likelihood called Q-function and the
M-step maximizes the Q-function with respect to unknown
parameters. Since the ETM-HMM learns from both labeled
and unlabeled data, the Q-function for the conventional
HMM needs to be redefined.

First, we derive the Q-function for labeled and unlabeled
mixed data in a general form. Let Zl and Zu be sets of
hidden variables that correspond to Dl and Du, respectively.
Then, a set of hidden variables Z ¼ Zl [ Zu corresponds to
D. Let � be a set of unknown model parameters. Assuming
that data are independently and identically distributed
(i.i.d.), complete data likelihood can be decomposed into the
complete data likelihood for labeled data and that for
unlabeled data:

pðD;Z j �Þ ¼ pðDl;Zl j �Þ � pðDu;Zu j �Þ: ð8Þ

Similarly, since pðDÞ ¼ pðDlÞ � pðDuÞ holds based on the
assumption of the independence between data, the dis-
tribution of posterior probabilities for the hidden variable Z
given current parameter estimates �old can be decomposed
as shown below:

P ðZ j D; �oldÞ ¼ pðD;Z j �oldÞ
pðDÞ

¼ pðDl;Zl j �oldÞ
pðDlÞ

� pðDu;Zu j �oldÞ
pðDuÞ

� P ðZl j Dl; �
oldÞ � P ðZu j Du; �

oldÞ:

ð9Þ

By definition, the general formulation of the Q-function is
given by:

Qð� j �oldÞ ¼ E
h
log pðD;Z j �Þ j D; �old

i
¼
X
Z

P ðZ j D; �oldÞ log pðD;Z j �Þ:
ð10Þ

Therefore, by substituting (8) and (9) into (10), the
Q-function for the mixed data can be obtained:

Qð� j �oldÞ ¼ Qlð� j �oldÞ þQuð� j �oldÞ; ð11Þ

where

Qlð� j �oldÞ ¼ E
h
log pðDl;Zl j �Þ j Dl; �

old
i

Quð� j �oldÞ ¼ E
h
log pðDu;Zu j �Þ j Du; �

old
i
:

Therefore, the Q-function for the mixed data is the direct
sum of the Q-functions for labeled and unlabeled data.

5.2 E-Step: Calculation of Q-Function

Applying (11) to ETM-HMMs, we derive the Q-function for
the EBW algorithm. Let Nl be the number of labeled
sequential data and I y be the set of data indices
fn j yn ¼ yg. Labeled data are fðXn; ynÞ 2 Dlg and the
corresponding hidden variables are fðSn;MnÞ 2 Zlg. By
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Fig. 2. Allocations of (a) labeled and (b) unlabeled sequences in the
state spaces of two classes. Labeled sequences can be located in either
TM-HMMs or an ETM-HMM. By contrast, unlabeled sequences can be
located only in an ETM-HMM.



taking the conditional expectation of the complete log-
likelihood (log of (7)) over the hidden variables given the

data and the current estimates of parameters �old, the
Q-function for labeled data, Ql, is derived as follows:

Qlð� j �oldÞ

¼
XNl

n¼1
E
h
log pðXn; yn; Sn;Mn j �Þ j Xn; yn;�

old
i

¼
XY
y¼1

X
n2Iy

�
log!y

þ
X
j

�n0
ðjÞ log�y

j

þ
X
i;j

XTn�1

t¼1
�nt
ði; jÞ log ayij

þ
X
j;k

XTn

t¼1
�nt
ðj; kÞ log cyik

þ
X
k

XTn

t¼1
�nt
ðkÞ logNðxnt

j ��k;�kÞ
�
:

ð12Þ

Next, the posterior probabilities of hidden variables defined

as (9) are specified. In (12), �, �, and � represent transition
posteriors, staying and emission posteriors, and emission

posteriors given below for t � 1:

�nt
ði; jÞ ¼ P ðst ¼ i; stþ1 ¼ j j Xn; yn;�

oldÞ; ð13Þ

�nt
ðj; kÞ ¼ P ðst ¼ j;mt ¼ k j Xn; yn;�

oldÞ; ð14Þ

�nt
ðkÞ ¼ P ðmt ¼ k j Xn; yn;�

oldÞ: ð15Þ

Note that, in (13), �n0
ðjÞ ¼ P ðs1 ¼ j j Xn; yn;�

oldÞ.
Let Nu be the number of unlabeled sequential data.

Unlabeled data are fXn 2 Dug and the corresponding
hidden variables are fðyn; Sn;MnÞ 2 Zug. By taking the

conditional expectation of the complete log-likelihood (log
of (7)) over the hidden variables given the data and the

current estimates of parameters �old, the Q-function for

unlabeled data, Qu, is derived as follows:

Quð� j �oldÞ

¼
XNu

n¼1
E
h
log pðXn; yn; Sn;Mn j �Þ j Xn;�

old
i

¼
XNu

n¼1

XY
y¼1

�
P ðy j Xn;�

oldÞ log!y

þ
X
j

�n0
ðy; jÞ log�y

j

þ
X
i;j

XTn�1

t¼1
�nt
ðy; i; jÞ log ayij

þ
X
j;k

XTn

t¼1
�nt
ðy; j; kÞ log cyik

þ
X
k

XTn

t¼1
	nt
ðy; kÞ logNðxnt

j ��k;�kÞ
�
:

ð16Þ

In (16), �, �, and 	 represent transition posteriors, staying

and emission posteriors, and emission posteriors given

below for t � 1:

�nt
ðy; i; jÞ ¼ P ðyn ¼ y; st ¼ i; stþ1 ¼ j j Xn;�

oldÞ; ð17Þ

�nt
ðy; j; kÞ ¼ P ðyn ¼ y; st ¼ j;mt ¼ k j Xn;�

oldÞ; ð18Þ

	nt
ðy; kÞ ¼ P ðyn ¼ y;mt ¼ k j Xn;�

oldÞ: ð19Þ

Note that, in (17), �n0
ðy; jÞ ¼ P ðyn ¼ y; s1 ¼ j j Xn;�

oldÞ.
Equations (17)-(19) correspond to (13)-(15), respectively,

but differ in that the class label y is regarded as the value of

the random variable. The class posterior given below

should also be calculated.

P ðy j Xn;�
oldÞ: ð20Þ

Either for labeled data or for unlabeled data, the forward-

backward algorithm [23] efficiently calculates the above

posteriors. For unlabeled data, however, due to computa-

tional problems, a modified scaling technique needs to be

applied in practice (See Appendix A).

The Q-function of the ETM-HMM is given by the sum of

(12) and (16). It is different from that of the TM-HMM in the

following two respects: First, Qu does not exist in the

Q-function for TM-HMMs since TM-HMMs cannot handle

unlabeled data. Second, the term for !y does not exist in Ql

for TM-HMMs in which class priors are not taken into

account.

5.3 M-Step: Parameter Reestimation

In the M-step, the Q-function that was derived in Section 5.2

is maximized with respect to each model parameter. For

example, the reestimation formula for class prior !y can be

obtained by maximizing the objective function J ¼ Qð� j
�oldÞ þ 
ð

PY
y¼1 !y � 1Þ with the constraint

PY
y¼1 !y ¼ 1,

where 
 is a Lagrange multiplier. By solving the two

equations, @J=@!y ¼ 0 and @J=@
 ¼ 0, the following rees-

timation formula is obtained:

!̂!y ¼
Ny þ

PNu

n¼1 P ðy j Xn;�
oldÞ

Nl þNu
; ð21Þ

where !̂!y denotes newly estimated !y and Ny represents the

number of labeled data belonging to class y.
In a similar manner, the reestimation formulae for

transition probabilities and mixture coefficients are ob-

tained as follows:2

âayij ¼

X
n2Iy

XTn�1

t¼1
�ynt
ði; jÞ þ

XNu

n¼1

XTn�1

t¼1
�nt
ðy; i; jÞ

X
n2Iy

XTn�1

t¼1

X
j

�ynt
ði; jÞ þ

XNu

n¼1

XTn�1

t¼1

X
j

�nt
ðy; i; jÞ

; ð22Þ
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left-to-right models in which �yi is unchanged by reestimation.



ĉcyjk ¼

X
n2Iy

XTn

t¼1
�ynt
ðj; kÞ þ

XNu

n¼1

XTn

t¼1
�nt
ðy; j; kÞ

X
n2Iy

XTn

t¼1

X
k

�ynt
ðj; kÞ þ

XNu

n¼1

XTn

t¼1

X
k

�nt
ðy; j; kÞ

: ð23Þ

The reestimation formulae for mixture components, which

are Gaussians, are given as follows:

�̂���k ¼

XY
y¼1

X
n2Iy

XTn

t¼1
�y
nt
ðkÞxnt

þ
XNu

n¼1

XTn

t¼1
	nt
ðy; kÞxnt

8<
:

9=
;

XY
y¼1

X
n2Iy

XTn

t¼1
�y
nt
ðkÞ þ

XNu

n¼1

XTn

t¼1
	nt
ðy; kÞ

8<
:

9=
;

; ð24Þ

�̂�k ¼

XY
y¼1

X
n2Iy

XTn

t¼1
�y
nt
ðkÞvkt þ

XNu

n¼1

XTn

t¼1
	nt
ðy; kÞvkt

8<
:

9=
;

XY
y¼1

X
n2Iy

XTn

t¼1
�y
nt
ðkÞ þ

XNu

n¼1

XTn

t¼1
	nt
ðy; kÞ

8<
:

9=
;

; ð25Þ

where vkt ¼ ðxnt
� ��kÞðxnt

� ��kÞ
t (the superscript t denotes

transpose).

At each stage of parameter reestimation, the increase in

the likelihood is guaranteed. We stop the EM cycle when

the change in the log-likelihood value is below a specified

threshold. However, when mixed data are used, accurate

calculation of the log-likelihood is computationally difficult;

therefore, we use another measure as a convergence

criterion (See Appendix B).

When only labeled data are used, the reestimation

formula for the class priors becomes !̂!y ¼ Ny=Nl. It is a

constant defined by the number of training data for each

class. Other parameter reestimation formulae become

those constituted from the first term of both numerators

and denominators. Such formulae are the same as those in

the BW algorithm. Therefore, if the class priors are the

same among classes, in other words, if we assume all

classes have the same number of data, the EBW algorithm

without unlabeled data is reduced to the BW algorithm.

That is, the BW algorithm can be viewed as a special case

of the EBW algorithm.

5.4 Selective Posterior Calculation

As for the practical issue, a few remarks should be made

concerning the computational cost of the EBW algorithm.

The computational complexity of calculating posteriors in

the EBW algorithm is, for labeled data, OðNlÞ; while, for

unlabeled data, it is OðNu � Y Þ. In the reestimation formula

for cyij (23), for example, the posterior (18) must be

calculated for all combinations of classes, states, and

Gaussian components (Y , Uy, and K) for each sequence.

In the case of the experiment in Section 6.3, Y ¼ 48, Uy ¼ 3,

and K ¼ 500; thus, the number of combinations is 72; 000.

Since such a large amount of computation is sometimes

impractical, we introduce the following approximate

calculation, which we call selective posterior calculation.

First, class posteriors (20) are calculated for all classes.

Next, according to their values, the classes are sorted

in descending order (e.g., If Y ¼ 4, P ð1 j XÞ ¼ 0:3,

P ð2 j XÞ ¼ 0:7, P ð3 j XÞ ¼ 0:1, and P ð4 j XÞ ¼ 0:5, we have

an ordered class index set as f2; 4; 1; 3g). Posteriors (13)-(19)
are calculated only for the top Mð� Y Þ classes and the

posterior values for the remaining classes are set at zero. For

instance, if we set M ¼ 3, there are 4; 500 parameter

combinations for (18), which is 1=16 of the original number

of combinations.

5.5 Classification

Once the ETM-HMM has been trained based on the

maximum likelihood principle, unknown sequential data

are classified to the class with the largest posterior

probability. The class y� of an unseen sequence X� is

determined by the following formula:

y� ¼ argmax
y

P ðy j X�; �̂�Þ; ð26Þ

where �̂� is the estimate of a set of parameters obtained by
the EBW algorithm.

6 EXPERIMENTS

6.1 Experimental Conditions

We experimentally validated the proposed algorithm on

two data sets: gesture data and speech data. Our goal is to

improve the classifiers that learned poorly due to the

scarcity of labeled data by adding unlabeled data. The

classification error rate (CER) was used to evaluate the

performance of the learned classifiers. The data in the

original data sets were all labeled; thus, unlabeled data

were created by hiding their class labels for experimental

purposes. In both experiments, in addition to the few initial

labeled training data Dini
l , either labeled data Dl or

unlabeled data Du were added to the training data set.

Here, we say that the initial data are “few” when the

addition of labeled data to the initial training data set

decreases the CER on the test data set. This situation implies

that the initial labeled training data are insufficient relative

to the number of model parameters and the model

parameters are not reliably estimated.

Once we found that there were few initial labeled data,

such ETM-HMM was trained on the larger quantity of

labeled data (Dini
l [ Dl) or on the mixed data (Dini

l [ Du) by

using the EBW algorithm varying the quantity of additional

data. The classification performance of learned ETM-HMMs

was compared for two types of additional data, labeled or

unlabeled, with respect to their quantity. In general, as the

quantity of labeled training data increases, the general-

ization performance improves [24]. Therefore, the addition

of labeled data can be regarded as the ideal setting for

performance improvement; we can examine how close the

performance with the addition of unlabeled data is to the

performance with the addition of labeled data.

In addition to the quantity of training data, the

classification performance is influenced by two other

factors: variances in the initialization of the model
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parameters and those in the training data selection.

Although both kinds of variance should be averaged, we

only averaged the effect of data selection over 10 trials

and used fixed initial model parameters for all trials since

the amount of computation required was too large. For

each quantity of additional labeled and unlabeled data,

the training data were drawn 10 times randomly from

the whole available training data set. Then, 10 different

ETM-HMMs were trained on these 10 data subsets. The

median of their CERs for the independent test data set

was calculated.

Throughout the experiments in this article, we used left-

to-right HMMs. Fixed model parameters of those HMMs

were set as follows: Class priors, transition probabilities,

and mixture coefficients were initialized to uniform dis-

tributions. Gaussians means were determined by the

k-means algorithm for the whole available training data of

all classes. Gaussian covariances were determined by the

Voronoi partitions of the data based on the result of the

k-means algorithm. The covariance matrices were diagonal.

Note that, in ETM-HMMs, since the feature spaces are tied,

all data can be used for estimating the Gaussian parameters.

By undertaking the initialization with large quantities of

data, we avoided the effect of poor parameterization so that

we could focus our attention on the effect of the data

amount.

6.2 Gesture Classification

6.2.1 Sign Language Data Set

The first experiment was on gesture data. Each gesture

was one of the 15 Japanese sign language (JSL) signs.

With magnetic sensors attached to both hands of the

experimental subjects, the positions of the hands in three

dimensional space and the rotation angles around three

axes were measured at a 30 Hz sampling rate. The

collected sequences were, therefore, 15 classes (Y ¼ 15)

and 12-dimensional. Each sign was performed 40 times

(30 for training data and 10 for test data) by 20 nonnative

JSL signers. The total amount of training data was 9; 000

and the total amount of test data was 3; 000. All 15 classes

have the same amount of data (600 training data and

200 test data for each class). The mean, maximum, and

minimum lengths of the sequences were, respectively,

25:6, 44, and 15 for the training data and 24:6, 41, and 16

for the test data.

6.2.2 Preliminary Experiment

Unless the addition of labeled data reduces the CER,

unlabeled data cannot reduce the errors, either. Therefore,

in our preliminary experiments, we first searched for a

situation where the training data were insufficient. Let

N ini
y be the amount of initial labeled data for class y. We

found that, when N ini
y ¼ 2 for all classes, the number of

states Uy ¼ 5 for all classes and the number of compo-

nents K ¼ 50, the median of CERs decreased more than

40 points when labeled sequences were added to the

training data. This implies that N ini
y is too small relative

to the number of model parameters to be estimated.

Using the above case as an example, we evaluated the

EBW algorithm when unlabeled data were added.

6.2.3 Experimental Results

We trained ETM-HMMs of the structure specified by Uy ¼ 5

and K ¼ 50. The initial labeled data, N ini
y ¼ 2 for all ys,

comprised about 0.33 percent of the total available training

data. Either 150 labeled or unlabeled sequences were added

at a time to Dini
l . That is, the number of additional data,Nl or

Nu, was 150. For each number, Nl or Nu, we created

10 training data sets by random sampling and, for the

10 ETM-HMMs learned from those training data subsets,

the CERs on the test data with a size Nt ¼ 3; 000 were

computed.

The result of the experiment is shown in Fig. 3. Each bar

in the graph represents the median of the CERs of 10 ETM-

HMMs. When no data were added, the median of the CERs

was 63.1 percent as shown by the leftmost bars. Black bars

show the change in the CERs caused by the addition of

labeled data. The median of CERs decreased to 17.2 percent

at their lowest. White bars show the change in the CERs

caused by the addition of unlabeled data. The median of

CERs decreased to 50.8 percent at their lowest. As Gaussian

parameters change more than other parameters by adding

unlabeled data, we presume that the improved estimation

of Gaussian parameters is the most important source of

performance improvement.

It should be noted that the addition of labeled data

lowered the CERs dramatically, whereas the addition of

unlabeled data lowered the CERs gradually. That is, in

terms of reducing errors, the labeled data were clearly

superior to the unlabeled data. However, we do not usually

have additional expensive labeled data and without adding

unlabeled data, the median of CERs remains at 63.1 percent.

In this regard, we can say that the addition of unlabeled

data by the EBW algorithm was beneficial in improving the

classifier for this gesture data set when the amount of

labeled data was limited.
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Fig. 3. The change in the classification error rates for JSL data by the
number of additional labeled or unlabeled data. The thick bars represent
medians of CERs and the thin lines represent upper and lower quartiles.
The initial training data were two labeled data for each class (i.e.,
N ini

l ¼ 30), the number of states Uy ¼ 5 for each class, and the number
of Gaussians K ¼ 50. Either 150 labeled or unlabeled data were added
at a time.



Note that, since all classes were equal as regards the
number of initial labeled data, the class priors were
uniform. Therefore, the initial ETM-HMMs learned by the
EBW algorithm were the same as the initial TM-HMMs
learned by the BW algorithm.

6.2.4 Comparison with Naive Labeling Approach

We compare our EBW algorithm with the NL approach
explained in Section 3 in terms of the degree of improve-
ment. Varying the confidence threshold C among
f0; 0:8; 1:0g, we computed the changes in the CERs caused
by the NL approach. Here, C ¼ 0 indicates the NL approach
without a confidence measure. The result is shown in Fig. 4
in which the CERs obtained by the EBW algorithm are cited
from Fig. 3. Although the CERs did not decrease mono-
tonically, the EBW algorithm was able to improve the
classification performance in general. In contrast, the
change in the CERs caused by the NL approach was
unstable. For some C and Nu, the CERs became worse than
that of the initial model. From the results, it can be said that
the EBW algorithm was superior to the NL approach for the
JSL data.

6.3 Phoneme Classification

6.3.1 Speech Data Set

As an example of larger data and uneven class distribu-
tions, we used the TIMIT corpus [25] of read speech. The
phoneme classification tasks on TIMIT have frequently been
used to evaluate classifiers for sequential data.

In our experiment, for the training data, we used the

standard data sets SX and SI defined in TIMIT. There were

140; 099 sequences or phonemes in this training data set,

and they were all used for model initialization. For the test

data, we used the core test data set defined in TIMIT. There

were 50; 754 sequences or phonemes in this test data set.

The mean, maximum, and minimum lengths of the

sequences were, respectively, 8:9, 238, and 3 for the training

data and 9, 465, and 3 for the test data. In contrast to the

gesture data, each class contained different numbers of

sequences: from the smallest (149 sequences) to the largest

(12; 516 sequences). As in [26], for training, we grouped

the original 64 phoneme categories into 48 as follows:

fq! 0 remove0g, fux!uwg, faxr!erg, fax-h!ahg, fem!
mg, fnx! ng, feng! ngg, fhv! hhg, fpcl; tcl; kcl! clg,
fbcl; dcl; gcl! vclg, fh#; pau! silg. As in [26], for testing,

we grouped the above 48 phoneme categories into 39 as

follows: fcl; vcl; ep! silg, fel! lg, fen! ng, fzh! shg, fao
! aag, fix! ihg, fax! ahg. Thirty-nine dimensional fea-

ture vectors were extracted as in [27]: 12 MFCC coefficients,

log-energy, and the corresponding delta and delta-delta

coefficients were computed at a 10 ms frame rate, using a

25 ms Hamming window.

6.3.2 Preliminary Experiment

In the preliminary experiment, as well as the previous

experiment on the gesture data, we searched for a

situation where there was little training data relative to

the number of free model parameters. As a result, we

found that the median of CERs decreased more than

20 points when we added labeled data, when N ini
y ¼ 5,

Uy ¼ 3 for all classes, and K ¼ 500. We focused on this

case as an example and evaluated the effect of unlabeled

data utilized by the EBW algorithm.
We also examined the effect of M which is introduced in

Section 5.4. Varying M among f1; 3; 5g, we compared the
CERs of the learned ETM-HMMs. Since we did not observe
any clear improvement by increasingM, we concluded that,
as far as the TIMIT corpus is concerned, the choice of M
does not affect the performance. Therefore, to minimize the
amount of computation, we chose M ¼ 1 for the rest of the
experiments.

6.3.3 Experimental Results

For Dini
l , although the class distributions of TIMIT were

inhomogeneous, we sampled the data uniformly from all
classes. This assumed that we knew there to be 48 classes,
but we had no prior knowledge of their distributions.
The number of initial labeled data N ini

y ¼ 5 for all y,
which comprised about 0.17 percent of all the available
training data. In contrast to the labeled data, the
unlabeled data were randomly drawn from the real
distribution of the whole training data since we usually
collect unlabeled data without knowing their true classes.
The sampled unlabeled data might reflect the true
distribution of the labeled data if the amount were large
enough. Either 480 labeled or unlabeled data were added
at a time until the total reached 4; 800. For each
additional amount, 10 different data sets were created
as above. Then, ETM-HMMs (Uy ¼ 3; K ¼ 500) were
trained on these data sets and tested on the same test
data set.

The results of these experiments are shown in Fig. 5.

The median of the CERs of the ETM-HMMs learned only

from initial labeled data was 66.7 percent. For the ETM-

HMMs learned from mixed data containing 4; 800 un-

labeled data, the median of CERs decreased to 54.1 per-

cent. Of course the addition of labeled data was more

effective (the median of CERs decreased 44.2 percent);

nevertheless, the improvement provided by the unlabeled
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Fig. 4. The change in the classification error rates for JSL data by the
EBW algorithm and by the NL approach for the same amount of
unlabeled data. The initial training data were two labeled data for each
class (i.e., N ini

l ¼ 30), the number of states Uy ¼ 5 for each class, and
the number of Gaussians K ¼ 50. Either 150 labeled or unlabeled data
were added at a time. The thick bars represent medians of CERs and
the thin lines represent upper and lower quartiles. In the NL approach,
the threshold of the confidence measure was changed (C ¼ 0; 0:8; 1:0).



data with the EBW algorithm may be valuable since

labeled data are usually expensive and not easily

available. As JSL gesture data, we presume that the

improvement comes from the better estimates of Gaussian

parameters.
In this experiment, the improvement provided by

unlabeled data was more significant than that for the
gesture data. One reason may be the difference in the
dimensionalities of the two data sets. In [4], it is argued that
unlabeled data are more effective when the feature
dimensionality is high. The dimensionality of TIMIT data
is about three times higher than that of JSL data.

Unfortunately, a significant improvement could not
always be achieved by using unlabeled data. When
relatively larger initial labeled data were available, the
addition of unlabeled data did not reduce the errors. Fig. 6
shows the case where N ini

y ¼ 50. As with the previous case,
Uy ¼ 3 and K ¼ 500. As can be seen, the addition of
unlabeled data did not improve the performance; on the
contrary, the addition sometimes had a detrimental effect.
For example, when 4; 800 unlabeled data were added, the
median of CERs was 44.2 percent, while the initial median
of CERs was 42.6 percent. Here, it should be noted that the
addition of labeled data did not improve the performance
significantly either, although they did not degrade the
performance. The main reason for the performance degra-
dation may be that the models responsible for the different
classes were close to each other as a result of the addition of
unlabeled data. That is, the class boundary provided by the
sufficient amount of initial labeled data may become
blurred through the addition of unlabeled data.

In conclusion, the addition of unlabeled data by the
EBW algorithm seems to be useful when HMMs need to
be complex to achieve satisfactory performances but
labeled data are too scarce to estimate their parameters
accurately. In contrast, it may be not helpful when there
are enough labeled data available.

6.3.4 Comparison with Naive Labeling Approach

We examined the NL approach using the same phoneme

data and model structure (Uy ¼ 3; K ¼ 500). Varying C

among f0; 0:8; 1:0g, we computed the changes in the CERs

when unlabeled data were added. Fig. 7 shows the medians

of the CERs for 10 data subsets for each amount of added

data. For ease of comparison, the results obtained with the

EBW algorithm are cited from Fig. 5. Clearly, the perfor-

mance of the ETM-HMMs learned by the EBW algorithm

was better than that with the NL approach. This result

implies an advantage of our approach. In addition to the

higher CERs, the results of the NL approach were unstable:

for some C and Nu, the performance degraded from that of

the initial ETM-HMMs. This difference in stability suggests

another advantage of our approach over the NL approach.
Here, we discuss the possible reasons for the ineffec-

tiveness of the NL approach. In the above experiment, the
CER for the initial model was 66.7 percent. We may regard
this CER as indicating poor performance. The pseudolabels
generated by such a classifier must be unreliable and the
addition of data might have adverse effects. Throughout the
experiment, regardless of the amount of additional data, the
poor initial parameter estimates were used for the
NL approach; in contrast, for the EBW algorithm, both
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Fig. 5. The change in the classification error rates for TIMIT data when

either 480 labeled or unlabeled sequences were added at a time to the

initial training data set (N ini
l ¼ 240). The thick bars represent medians of

CERs and the thin lines represent upper and lower quartiles. The

number of states Uy ¼ 3 for each class and the number of Gaussians

K ¼ 500.

Fig. 6. The change in the classification error rates for TIMIT data when

either 480 labeled or unlabeled sequences were added at a time to the

initial training data set (N ini
l ¼ 2; 400). The thick bars represent medians

of CERs and the thin lines represent upper and lower quartiles. The

number of states Uy ¼ 3 for each class and the number of Gaussians

K ¼ 500.

Fig. 7. The change in the classification error rates for TIMIT data by the

EBW algorithm and by the NL approach for the same amount of data.
The number of states Uy ¼ 3 for each class and the number of

Gaussians K ¼ 500. Either 480 labeled or unlabeled sequences were
added at a time to the initial training data set (N ini

l ¼ 240). The thick bars

represent medians of CERs and the thin lines represent upper and lower
quartiles. In the NL approach, the confidence measure threshold was

changed (C ¼ 0; 0:8; 1:0).



labeled and unlabeled data can be used from the beginning
of the learning process. Possibly, the NL approach may
work when the initial models are relatively well trained
based solely on initial labeled data. When the initial models
are unreliable and the purpose of using unlabeled data is to
improve the classification to an acceptable level, as has been
considered in this paper, our method may work better than
the NL approach.

7 CONCLUSION

In this paper, we proposed the EBW algorithm to enable the
learning of HMMs from both labeled and unlabeled
sequential data. Conventionally, in HMM learning, unla-
beled sequences have been used heuristically by the
NL approach without the guarantee of convergence. In
contrast, in the EBW algorithm, the parameter reestimation
formulae have been formally derived in the framework of
the EM algorithm. We also found that our method utilized
unlabeled sequences more effectively than the NL approach
in terms of classification performance. Two experimental
results on gesture data and speech data showed that the
EBW algorithm reduced the classification errors in most
cases in contrast to the NL approach.

Although when the initial labeled data were scarce, our
method could compensate for the insufficiency of labeled
training data by using unlabeled data, when the initial
labeled data were sufficient, the EBW algorithm sometimes
had a detrimental effect on the classification performance.
This is a limitation of our approach and the situations in
which unlabeled sequences do not help should be studied
further. The reason why adding unlabeled data could not
monotonically improve the performance can probably be
explained based on the analysis in [28].

In future work, we can apply our method for adaptation
where unseen test data whose properties are different from
those of training data can be regarded as unlabeled data.
Furthermore, there exists a more sophisticated NL approach
called cotraining [29], in which feature vectors need to be
separated into two feature sets, each of which is capable of
learning a classifier. When we have such a redundant data
set, it is interesting to compare the NL approach, the EBW
algorithm, and cotraining.

APPENDIX A

SCALING FOR THE UNLABELED POSTERIORS

This appendix describes the scaling technique we used to
prevent the computational problem that occurs during the
calculation of unlabeled posteriors. In HMMs, posteriors are
efficiently calculated by the forward-backward algorithm
[23]. However, if the observed sequence is long, the values
of the intermediate variables used in the forward-backward
algorithm become too small to be handled within the
precision range of computers. For labeled data, this problem
can be avoided by applying a scaling technique [23]. For
unlabeled data, however, it is not applicable. In the
following, we show why conventional scaling does not
work and present a modified scaling procedure that is
applicable to unlabeled data.

As an example, we consider the calculation of transition
posteriors for labeled or unlabeled data (13) or (17). Here,
and in the following, for simplicity of notation, we assume a
single observation and omit the index n. Let �y

t ðiÞ ¼
pðx1; . . . ;xt; st ¼ i j y;�Þ be the forward variable unscaled
and computed from time 1 to t in the state i at time t. Let
�y
t ðjÞ ¼ pðxtþ1; . . . ;xT j st ¼ i; y;�Þ be the backward vari-

able unscaled and computed from time T to t in the state j
at time t. Let ~��y

t ðiÞ be the forward variable scaled from time 1
to time t� 1 in the state i at time t, and ~��y

t ðjÞ be the
backward variable scaled from time T to time tþ 1 in the
state j at time t. Let Wy

t ¼ 1=
P

i ~��
y
t ðiÞ be the scaling

coefficient at time t, ���y
t ðiÞ ¼Wy

t � ~��
y
t ðiÞ be the forward

variable scaled from time 1 to time t, and ���y
t ðjÞ ¼

Wy
t � ~��

y
t ðjÞ be the backward variables scaled from time T

to time t. Between scaled forward or backward variables,
unscaled forward or backward variables, and scaling
coefficients, the following relationships holds [23]:

���y
t ðiÞ ¼

Yt
t0¼1

Wy
t0

" #
� �y

t ðiÞ; ð27Þ

���y
tþ1ðjÞ ¼

YT
t0¼tþ1

Wy
t0

" #
� �y

tþ1ðjÞ: ð28Þ

For labeled data, if this scaling procedure is applied, since
the scaling coefficients in the numerator and the denomi-
nator cancel out, �yt ði; jÞ can be calculated by the following
equation:

�yt ði; jÞ ¼
���y
t ðiÞa

y
ijb

y
jðxtþ1Þ ���y

tþ1ðjÞP
i2Fy0 ���

y0

T ðiÞ
; ð29Þ

where byjðxtþ1Þ ¼
P

k c
y
jkNðxtþ1 j �k;�kÞ and Fy represents

the final state among the states of the class y HMM. For
unlabeled data, if the scaling procedure is applied, �tðy; i; jÞ
may be calculated by the following equation:

�tðy; i; jÞ ¼
!y ���

y
t ðiÞa

y
ijb

y
jðxtþ1Þ ���y

tþ1ðjÞQT
t0¼1 W

y
t0

h iP
y0 !y0

P
i2Fy0 �

y0

T ðiÞ
: ð30Þ

In (30), with the help of the scaling, each variable in the
numerator can be calculated at each time t; while, in the
denominator, the product of scaling coefficients

QT
t0¼1 W

y
t0

cannot be calculated when the length of the sequence T is
large. This is because Wy

t is usually large at each t and the
calculation of the product often reaches infinity on
computers. To avoid this problem, the following successive
computation procedure is introduced. We transform the
denominator of (30) as follows:

YT
t0¼1

Wy
t0

" #X
y0

!y0
X
i2Fy0

�y0

T ðiÞ

¼
YT
t0¼1

Wy
t0

X
y0

!y0
1QT

t0¼1 W
y0

t0

¼
X
y0

!y0
YT
t0¼1

Wy
t0

Wy0

t0

 !
:

ð31Þ
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By so doing, in most practical cases, the value of Wy
t =W

y0

t

remains computable. Other posteriors for unlabeled data

can be calculated by applying this transformation.

APPENDIX B

CONVERGENCE CRITERION

This appendix describes the convergence criterion used in

this paper. When the increase in likelihood is smaller than a

predefined threshold, we regard the EBW algorithm to be

converged. This is possible on condition that the likelihood,

or log-likelihood, is computable. The log-likelihood of an

ETM-HMM is given as follows:

Lð� j DÞ ¼
XY
y¼1

X
n2Iy

log pðXn; yn j �Þ þ
XNu

n¼1
log pðXn j �Þ

¼
XY
y¼1

X
n2Iy

log!ypðXn j y;�Þ

þ
XNu

n¼1
log
X
y

!ypðXn j y;�Þ:

ð32Þ

When scaling coefficients Wy
nt

defined in Appendix A are

used and since
QTn

t¼1 W
y
nt
¼ pðXn j y;�Þ holds, (32) is

rewritten as:

Lð� j DÞ ¼
XY
y¼1

X
n2Iy

log
!yQTn

t¼1 W
y
nt

þ
XNu

n¼1
log
XY
y¼1

!yQTn

t¼1 W
y
nt

:

ð33Þ

As has been explained in Appendix A,
QTn

t¼1 W
y
nt

cannot be

computed when Tn is large. To make the log-likelihood

computable, we introduce a metascaling coefficient V

whose value is defined empirically according to the data.

Let N be the sum of Nl and Nu. By substituting the product

of V from (33), we have:

L0ð� j DÞ ¼ Lð� j DÞ � log
YN
n¼1

YTn

t¼1
V

¼ Lð� j DÞ �
XY
y¼1

X
n2Iy

log
YTn

t¼1
V�

XNu

n¼1
log
YTn

t¼1
V

¼
XY
y¼1

X
n2Iy

log
!yQTn

t¼1ðV �Wy
nt
Þ

þ
XNu

n¼1
log
XY
y¼1

!yQTn

t¼1ðV �Wy
nt
Þ
:

ð34Þ

Thus, if we choose V appropriately so that
QT

t¼1ðV �Wy
nt
Þ is

computable, we can obtain L0ð� j DÞ. Although L0ð� j DÞ
is no longer the log-likelihood itself, since the substituted

value, log
QN

n¼1
QTn

t¼1 V, is a constant, we can use the

change in L0ð� j DÞ to determine the convergence of the

EBW algorithm.
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