午前の部(10:30~12:00)

# 5月 木 ス タ ― 題 名	沢田 浩和 研究室	
1800(中帯に) 2度率内伝管制度		発表者
3 子スケンプ環境に対するジリ液伝酵刺皮 4 子スケンプ環境に対するジリ液伝酵刺皮 4 子スケンプ環境に対するジリ液体等イベーシャカ東の検討	1 60GHz帯ミリ波車内伝搬測定	
4 子スクトップ環境におけるシリ液帯ダイバーシア効果の検討		
5日 反対波を利用した9000+世界無経通信の検討	3 デスクトップ環境におけるミリ波伝搬測定	
6 丘角指向性をもつ800日に帯チョーケ付きコニカルホーンアンテナ		
刊自教アンデナステアリングンステムの開発 山本 貴之 日本		
8日東早経路の放射特性解析		
9月ボイエリアネットワーク伝統測定(1)		
10 世界		
##	10 ボディエリアネットワーク伝搬測定(2)	
##	高野 剛浩 研究室	
12 接勤モードの非対称性を利用ルた維相駆動超音波と一夕の应用	番号 ポスター 題名	発表者
13 細棒への直交する屈曲振動した超音波モーターの配作		
14 円板の原曲振動による超音波手接を利用した超音波モータの試作		
15]圧電セラミックを用いたマイクロ発電機構の基礎的な検討		
銀子 一 研究室 日本 1		
##		则 即 视 " 溴 田 '仏
10 個度処理ハードウェアに関する研究		I 34 + +/
17 組み込み機器のウェブインタフェースに関する研究	<u> </u>	
18 FPGAIC よる組み込み機器の実装に関する研究 野村 太一 19 組み込み機器のGUIC関する研究 渡部 雅大 渡部 雅大 河野 公一 研究室 第一表 本		
19 組み込み機器のGUIに関する研究 漢彦 雅大 河野 公一 研究室 発 表 者 20 / 7画像を用いた森林火災煙の検出に関する研究 田畑 久美子 21 / 7面像を用いた森林火災煙の検出に関する研究 田畑 久美子 21 / 7面像を用いた海水火火晶霊の分離に関する研究 抽村 由佳 23 / 7面偏重像からの汚染物質の検出に関する研究 抽村 由佳 47 / 7万 - 9を用いた通水と水晶霊の分離に関する研究 小野 年雄 42 / 7万 - 9を用いた画像検索システムの開発 佐藤 彩 九田 裕 研究室 発表 者 25 / 70 / 70 / 70 / 70 / 70 / 70 / 70 / 7		
河野 公一 研究室 発表 者 発表 者 20	19 組み込み機器のGUIC関する研究	
## 1 ボ ス タ ー 題 名		MX HP VEX
20		登 表 考
221	2017ア画像を用いた森林火災煙の給出に関する研究	
23		
23		
角田 裕 研究室 番号 ボ ス タ ― 題 名 25 「バルス型DoS攻撃の影響と検知システムに関する検討 26 Sysiog情報の高信頼な収集システムに関する研究 ―TCPを用いた収集システムの構築と性能調須藤 俊吾・武田 功 27 Sysiog情報の高信頼な収集システムに関する研究 ―TCPを用いた収集システムの構築と性能調須藤 俊吾・武田 功 27 Sysiog情報の高信頼な収集システムに関する研究 ―収集経路可視化システムの規作― ―――――――――――――――――――――――――――――――――――		小野 年雄
番号 ボ ス タ ― 題 名 25 バルス型のS数撃の影響と検知システムに関する検討 25 Syslog情報の高信頼な収集システムに関する研究 ―TCPを用いた収集システムの構築と性能到須藤 俊吾・武田 功 27 Syslog情報の高信頼な収集システムに関する研究 ―収集経路可視化システムの構築と性能到須藤 俊吾・武田 功 27 Syslog情報の高信頼な収集システムに関する研究 ―収集経路可視化システムの制作 ―	24/ノアデータを用いた画像検索システムの開発	佐藤 彰
番号 ボ ス タ ― 題 名 25 バルス型のS数撃の影響と検知システムに関する検討 25 Syslog情報の高信頼な収集システムに関する研究 ―TCPを用いた収集システムの構築と性能到須藤 俊吾・武田 功 27 Syslog情報の高信頼な収集システムに関する研究 ―収集経路可視化システムの構築と性能到須藤 俊吾・武田 功 27 Syslog情報の高信頼な収集システムに関する研究 ―収集経路可視化システムの制作 ―	角田 裕 研究室	
26 Syslog情報の高信頼な収集/27-1/に関する研究 — TCPを用いた収集/27-1/の横奏と性能 須藤 俊吾・武田 功 27 Syslog情報の高信頼な収集/27-1/に関する研究 — 収集経路可視化/27-1/の試作 —	番号 ポスター 題 名	
27 Syslog情報の高信頼な収集システムに関する研究 ―収集経路可視化システムの試作 高橋 啓・高橋 沙矢佳 上杉 直 研究室 発表 者 28 高非線形単一モード光ファイバによる連続スペクトル発生 志摩 慶治・菊池 重人 29		
上杉 直 研究室 番号 ボ ス タ - 題 名 28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リツジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 31 二光子吸収電流による超短光パルスの自己相関波形測定 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間接似実時間伝送に関する研究 野口 一博 研究室 番号 ボ ス タ - 題 名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 四馬 真也・佐藤隆宣 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRICよる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ボ ス タ - 題 名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の変電製品への応用に関する研究 41 ファジィ理論の家電製品への応用に関する研究 47 ファジィ理論の家電製品への応用に関する研究 47 ファジィ理論のエレベータ群管理システムへの応用に関する研究 48 表 者 43 霊景観のCGシミュレーション 47 研究室 第 表 者 43 霊景観のCGシミュレーション 47 砂塵を考慮した砂石のアジュコレーション 47 砂塵を考慮した砂石のアジュコレーション 48 噴水のCGシミュレーションの改良 46 底が発	26 Syslog情報の高信頼な収集システムに関する研究 —TCPを用いた収集システムの構築と性能評	須藤 俊吾・武田 功
番号 ポスター 題名 28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用した光パラナリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 「ハイビジョン映像のPC間擬似実時間伝送に関する研究 男ワー博 研究室 番号 ポスター 題名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 36 「アジタル制御による熱光学効果型光スイッチの出力光レベル安定化 門馬 真也・佐藤 隆宣 37 ボスター 題名 38 光プイルタを用いた波長多重光アドドロップ回路の検討 36 「OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポスター 題名 38 ミューラルネットワークを用いた波長分散測定 第号 ポスター 題名 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論の変電製品への応用に関する研究 41 ファジィ理論のエレベータ群管理システムへの応用に関する研究 42 ファジィ理論のエレベータ群管理システムへの応用に関する研究 45 養素 者 46 表表 47 アラ・題名 47 アラ・型 題名 48 最素をした砂圧ののに対した場が表したが表した砂圧の応見に対していました。 大場 政洋・片山 満彦 大力 アラ・単島 名 第長 表 者 48 最景観ののでシミュレーション 45 冬季景観表現のための水柱の自動生成法 46 しなりを考慮した砂圧のCGシミュレーション 45 冬季景観表現のための水柱の自動生成法 46 しなりを考慮した砂圧のCGシミュレーション 47 砂塵を考慮した砂圧のCGシミュレーション 48 噴水のGGシミュレーションの改良 49 「CGによる鳥の詳細表現法 50 「CGのための鳥のはばたき計算法に関する検討 51 「CGによるペーパーブレーンの飛行シミュレーション 51 は廃棄 第列 50 「CGのための鳥のはばたき計算法に関する検討 51 「CGによるペーパーブレーンの飛行シミュレーション		高橋 啓・高橋 沙矢佳
28 高非線形単一モード光ファイバによる連続スペクトル発生 志摩 慶治・菊池 重人 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究	上杉直研究室	
29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 川村 卓大・小野寺 孝輔 30 リッジPPLN光導波路による波長変換特性の研究 遠藤 寛土・大川口 聡 31 二光子吸収電流による超短光パルスの自己相関波形測定 星 充・金子 雄祐 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 児玉 寛人・梅内 勇気 児玉 寛人・梅内 勇気 野口 一博 研究室 番 名 名 表 者 名 表 者 名 表 者 名 表 者 名 表 者 名 表 者 名 表 者 名 表 者 名 表 者 名 表 ま 者 名 表 ま 者 自		1 3, <u>-</u>
30 リッジPPLN光導波路による波長変換特性の研究 遠藤 寛土・大川口 聡 31 光子吸収電流による超短光パルスの自己相関波形測定 星 充・金子 雄枯 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 児玉 寛人・梅内 勇気 野口 一博 研究室 番号 ポ ス タ ー 題 名 発 表 者 名		
31 二光子吸収電流による超短光パルスの自己相関波形測定 星 充・金子 雄祐 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 児玉 寛人・梅内 勇気 野口 一博 研究室 番号 ボ ス タ 一 題 名 発 表 者 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 石幡 哲也・佐々木 拓人 34 ディジタル制御による詠光学効果型光スイッチの出力光レベル安定化 門馬 真也・佐藤 隆宣 35 光フィルタを用いた波長多重光アドワップ回路の検討 増村 泰人・森 佳文 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 石垣 洋介・堺 雄一郎 37 誘導ラマン散乱光パルスを用いた波長分散測定 千葉 雄一郎・田畑 雄太 佐藤 光男 研究室 番号 ポ ス タ 一 題 名 名 表 者 38 ニューラルネットワークを用いた起床検知システムに関する研究 小野 誠・熊木 健将 39 エキスパートシステムの医療分野への応用に関する研究 小野 誠・熊木 健将 39 エキスパートシステムの医療分野への応用に関する研究 古城 吉孝 インアジィ理論の変電製品への応用に関する研究 古城 吉孝 インアジィ理論の変電製品への応用に関する研究 遠藤 弘志・大場 政洋・片山 満彦 42 ファジィ理論を用いた都市ごみ焼却ブラント燃焼制御システムに関する研究 遠藤 弘志・大場 政洋・片山 満彦 42 ファジィ理論を用いた都市ごみ焼却ブラント燃焼制御システムに関する研究 技事 達 ・ 音村 一貴 インタ ー 題 名 発 表 者 発 表 者 日本 日本 日本 日本 日本 日本 日本	28 高非線形単一モード光ファイバによる連続スペクトル発生	志摩 慶治·菊池 重人
32 ハイビジョン映像のPC間擬似実時間伝送に関する研究	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔
野口 - 博 研究室	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡
番号 ポスター題名	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐
33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 石幡 哲也・佐々木 拓人 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 門馬 真也・佐藤 隆宣 35 光フィルタを用いた波長多重光アドドロップ回路の検討 増村 泰人・森 佳文 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 石垣 洋介・堺 雄一郎 37 誘導ラマン散乱光パルスを用いた波長分散測定 干葉 雄一郎・田畑 雄太 佐藤 光男 研究室 番号 ポ ス タ ー 題 名 発 表 者 38 ニューラルネットワークを用いた起床検知システムに関する研究 小野誠・熊木 健将 39 エキスパートシステムの医療分野への応用に関する研究 小山 将史 40 ファジィ理論の家電製品への応用に関する研究 山 押史 41 ファジィ理論のエレベータ群管理システムへの応用に関する研究 遠藤 弘志・大場 政洋・片山 満彦 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 浅野 達也・伊東 圭・吉村 一貴 村岡 一信 研究室 番号 ポ ス タ ー 題 名 発 表 者 43 雲景観の区のシミュレーション 相澤 優太 44 オーロラのビジュアルシミュレーション 相澤 優太 44 オーロラのビジュアルシミュレーション 相澤 優太 45 冬季景観表現のための氷柱の自動生成法 高橋 迪智 46 しなりを考慮した竹の詳細区Gモデル 東藤 彰朗 48 噴水のCGシミュレーションの改良 佐藤	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐
34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 門馬 真也・佐藤 隆宣 35 光フィルタを用いた波長多重光アドドロップ回路の検討 増村 泰人・森 佳文 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 石垣 洋介・堺 雄一郎 日垣 注介・堺 雄一郎・田畑 雄太 佐藤 光男 研究室 日東 本 日	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気
35 光フィルタを用いた波長多重光アドドロップ回路の検討	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポ ス タ ー 題 名	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者
37 誘導ラマン散乱光パルスを用いた波長分散測定	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポ ス タ ー 題 名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 哲也·佐々木 拓人
佐藤 光男 研究室 発 表 者 番号 ポ ス タ ー 題 名 発 表 者 38 ニューラルネットワークを用いた起床検知システムに関する研究 小野誠・熊木 健将 39 エキスパートシステムの医療分野への応用に関する研究 古城 吉孝 40 ファジィ理論の家電製品への応用に関する研究 小山 将史 41 ファジィ理論のエレベータ群管理システムへの応用に関する研究 遠藤 弘志・大場 政洋・片山 満彦 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 浅野 達也・伊東 圭・吉村 一貴 村岡 一信 研究室 名 発 表 者 番号 ポ ス タ ー 題 名 発 表 者 43 雲景観のCGシミュレーション 相澤 優太 44 オーロラのビジュアルシミュレーション 伊藤 大輔 45 冬季景観表現のための外柱の自動生成法 高橋 迪智 46 しなりを考慮した砂丘のCGシミュレーション 伊藤 彰朗 47 砂塵を考慮した砂丘のCGシミュレーション 伊藤 彰朗 48 噴水のCGシミュレーションの改良 佐藤 押 49 CGによる鳥の詳細表現法 佐藤 押 50 CGのための鳥のはばたき計算法に関する検討 伊藤 薫 51 CGによるペーパープレーンの飛行シミュレーション 岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポ ス タ ー 題 名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 哲也·佐々木 拓人 門馬 真也·佐藤 隆宣 増村 泰人·森 佳文
番号ポスター題名発表者38 ニューラルネットワークを用いた起床検知システムに関する研究小野誠・熊木健将39 エキスパートシステムの医療分野への応用に関する研究古城吉孝40 ファジィ理論の家電製品への応用に関する研究小山 将史41 ファジィ理論のエレベータ群管理システムへの応用に関する研究遠藤 弘志・大場 政洋・片山 満彦42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究浅野 達也・伊東 圭・吉村 一貴村岡 一信 研究室発表者番号 ポスター題名発表者43 雲景観のCGシミュレーション相澤優太44 オーロラのビジュアルシミュレーション伊藤大輔45 冬季!観表現のための氷柱の自動生成法高橋 迪智46 しなりを考慮した物匠のCGシミュレーション伊藤 彰朗48 噴水のCGシミュレーションの改良佐藤 河48 噴水のCGシミュレーションの改良佐藤 河49 CGによる鳥の詳細表現法佐藤 河50 CGのための鳥のはばたき計算法に関する検討伊藤薫51 CGによるペーパープレーンの飛行シミュレーション岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポ ス タ ー 題 名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 哲也·佐々木 拓人 門馬 真也·佐藤 隆宣 増村 泰人·森 佳文 石垣 洋介·堺 雄一郎
38 ニューラルネットワークを用いた起床検知システムに関する研究	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポ ス タ ー 題 名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 哲也·佐々木 拓人 門馬 真也·佐藤 隆宣 増村 泰人·森 佳文 石垣 洋介·堺 雄一郎
39 エキスパートシステムの医療分野への応用に関する研究	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポ ス タ ー 題 名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 哲也·佐々木 拓人 門馬 真也·佐藤 隆宣 増村 泰人·森 佳文 石垣 洋介·堺 雄一郎 千葉 雄一郎・田畑 雄太
40 ファジィ理論の家電製品への応用に関する研究 小山 将史 遠藤 弘志・大場 政洋・片山 満彦 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 浅野 達也・伊東 圭・吉村 一貴 村岡 一信 研究室 番号 ボスター 題名 発表者 43 雲景観のCGシミュレーション 相澤優太 44 オーロラのビジュアルシミュレーション 伊藤 大輔 45 冬季景観表現のための氷柱の自動生成法 高橋 迪智 46 しなりを考慮した竹の詳細CGモデル 濱田 興宏 47 砂塵を考慮した砂丘のCGシミュレーション 伊藤 彰朗 48 噴水のCGシミュレーションの改良 佐藤 一真 49 CGによる鳥の詳細表現法 佐藤 翔 50 CGのための鳥のはばたき計算法に関する検討 伊藤 薫 51 CGによるペーパープレーンの飛行シミュレーション 岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポスター 題 名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 哲也·佐々木 拓人 門馬 真也·佐藤 隆宣 増村 泰人·森 佳文 石垣 洋介·堺 雄一郎 千葉 雄一郎・田畑 雄太 発 表 者
41 ファジィ理論のエレベータ群管理システムへの応用に関する研究遠藤 弘志・大場 政洋・片山 満彦42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究浅野 達也・伊東 圭・吉村 一貴村岡 一信 研究室発 表 者番号 ボスター 題名発 表 者43 雲景観のCGシミュレーション相澤 優太44 オーロラのビジュアルシミュレーション伊藤 大輔45 冬季景観表現のための氷柱の自動生成法高橋 迪智46 しなりを考慮した竹の詳細CGモデル宮田 興宏47 砂塵を考慮した砂丘のCGシミュレーション伊藤 彰朗48 噴水のCGシミュレーションの改良佐藤 河49 CGによる鳥の詳細表現法佐藤 翔50 CGのための鳥のはばたき計算法に関する検討伊藤 薫51 CGによるペーパープレーンの飛行シミュレーション岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポ ス タ ー 題 名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポ ス タ ー 題 名 38 ニューラルネットワークを用いた起床検知システムに関する研究	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 哲也·佐々木 拓人 門馬 真也·佐藤 隆宣 増村 泰人·森 佳文 石垣 洋介·堺 雄一郎 千葉 雄一郎・田畑 雄太 発 表 者 小野誠・熊木 健将
42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究浅野 達也・伊東 圭・吉村 一貴村岡 一信 研究室番号 ボスター 題名発表者番号 ボスター 題名伊藤 大輔43 雲景観のCGシミュレーション伊藤 大輔45 冬季景観表現のための氷柱の自動生成法高橋 迪智46 しなりを考慮した竹の詳細CGモデル濱田 興宏47 砂塵を考慮した砂丘のCGシミュレーション伊藤 彰朗48 噴水のCGシミュレーションの改良佐藤 一真49 CGによる鳥の詳細表現法佐藤 翔50 CGのための鳥のはばたき計算法に関する検討伊藤 薫51 CGによるペーパープレーンの飛行シミュレーション岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポ ス タ ー 題 名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポ ス タ ー 題 名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 哲也·佐々木 拓人 門馬 真也·佐藤 隆宣 増村 泰人·森 佳文 石垣 洋介·堺 雄一郎 千葉 雄一郎・田畑 雄太 発 表 者 小野 誠・熊木 健将 古城 吉孝
村岡 一信 研究室 発表者 番号 ポスター 題名 発表者 43 雲景観のCGシミュレーション 相澤優太 44 オーロラのビジュアルシミュレーション 伊藤 大輔 45 冬季景観表現のための氷柱の自動生成法 高橋 迪智 46 しなりを考慮した竹の詳細CGモデル 濱田 興宏 47 砂塵を考慮した砂丘のCGシミュレーション 伊藤 彰朗 48 噴水のCGシミュレーションの改良 佐藤 一真 49 CGによる鳥の詳細表現法 佐藤 翔 50 CGのための鳥のはばたき計算法に関する検討 伊藤 薫 51 CGによるペーパープレーンの飛行シミュレーション 岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポスター 題名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポスター 題名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の家電製品への応用に関する研究	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 哲也·佐々木 拓人 門馬 真也·佐藤 隆宣 増村 泰人·森 佳文 石垣 洋介·堺 雄一郎 千葉 雄一郎・田畑 雄太 発 表 者 小野 誠・熊木 健将 古城 吉孝 小山 将史
番号ポスター 題名発表者43 雲景観のCGシミュレーション相澤優太44 オーロラのビジュアルシミュレーション伊藤 大輔45 冬季景観表現のための氷柱の自動生成法高橋 迪智46 しなりを考慮した竹の詳細CGモデル濱田 興宏47 砂塵を考慮した砂丘のCGシミュレーション伊藤 彰朗48 噴水のCGシミュレーションの改良佐藤 一真49 CGによる鳥の詳細表現法佐藤翔50 CGのための鳥のはばたき計算法に関する検討伊藤薫51 CGによるペーパープレーンの飛行シミュレーション岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポ ス タ ー 題 名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポ ス タ ー 題 名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論のエレベータ群管理システムへの応用に関する研究	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 哲也·佐々木 拓人 門馬 真也·佐藤 隆宣 増村 泰人·森 佳文 石垣 洋介·堺 雄一郎 千葉 雄一郎・田畑 雄太 発 表 者 小野 誠・熊木 健将 古城 吉孝 小山 将史 遠藤 弘志・大場 政洋・片山 満彦
43 雲景観のCGシミュレーション相澤 優太44 オーロラのビジュアルシミュレーション伊藤 大輔45 冬季景観表現のための氷柱の自動生成法高橋 迪智46 しなりを考慮した竹の詳細CGモデル演田 興宏47 砂塵を考慮した砂丘のCGシミュレーション伊藤 彰朗48 噴水のCGシミュレーションの改良佐藤 一真49 CGによる鳥の詳細表現法佐藤 翔50 CGのための鳥のはばたき計算法に関する検討伊藤 薫51 CGによるペーパープレーンの飛行シミュレーション岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポ ス タ ー 題 名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポ ス タ ー 題 名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論のエレベータ群管理システムへの応用に関する研究 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 哲也·佐々木 拓人 門馬 真也·佐藤 隆宣 増村 泰人·森 佳文 石垣 洋介·堺 雄一郎 千葉 雄一郎・田畑 雄太 発 表 者 小野 誠・熊木 健将 古城 吉孝 小山 将史 遠藤 弘志・大場 政洋・片山 満彦
44 オーロラのビジュアルシミュレーション伊藤 大輔45 冬季景観表現のための氷柱の自動生成法高橋 迪智46 しなりを考慮した竹の詳細CGモデル濱田 興宏47 砂塵を考慮した砂丘のCGシミュレーション伊藤 彰朗48 噴水のCGシミュレーションの改良佐藤 一真49 CGによる鳥の詳細表現法佐藤 翔50 CGのための鳥のはばたき計算法に関する検討伊藤 薫51 CGによるペーパープレーンの飛行シミュレーション岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポスター 題名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポスター 題名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論のエレベータ群管理システムへの応用に関する研究 41 ファジィ理論のエレベータ群管理システムへの応用に関する研究 42 ファジィ理論を用いた都市ごみ焼却ブラント燃焼制御システムに関する研究 村岡 一信 研究室	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 哲也·佐々木 拓人 門馬 真也·佐藤 隆文 石垣 洋介·堺・・ 本年 は一 第一 本年 は一 が 古 大
45 冬季景観表現のための氷柱の自動生成法高橋 迪智46 しなりを考慮した竹の詳細CGモデル濱田 興宏47 砂塵を考慮した砂丘のCGシミュレーション伊藤 彰朗48 噴水のCGシミュレーションの改良佐藤 一真49 CGによる鳥の詳細表現法佐藤 翔50 CGのための鳥のはばたき計算法に関する検討伊藤 薫51 CGによるペーパープレーンの飛行シミュレーション岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポスター 題名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポスター 題名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論のエレベータ群管理システムへの応用に関する研究 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 村岡 一信 研究室	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 真也·佐存 隆宜 増 垣 洋介·堺・田畑 雄太 発 表 者 小野 誠・熊木 健将 古城 吉孝 小山 将史 遠藤 弘志・大場 政洋・片山 満彦 浅野 達也・伊東 圭・吉村 一貴
46 しなりを考慮した竹の詳細CGモデル濱田 興宏47 砂塵を考慮した砂丘のCGシミュレーション伊藤 彰朗48 噴水のCGシミュレーションの改良佐藤 一真49 CGによる鳥の詳細表現法佐藤 翔50 CGのための鳥のはばたき計算法に関する検討伊藤 薫51 CGによるペーパープレーンの飛行シミュレーション岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ボスター 題名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポスター 題名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論のエレベータ群管理システムへの応用に関する研究 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 村岡 一信 研究室 番号 ポスター 題名	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石門馬 真也·佐存 格室 増 垣 洋介·堺・田畑 雄太 発 表 者 小野 誠・熊木 健将 古城 吉孝 小山 将史 遠藤 ・大場 政洋・片山 満彦 浅野 達也・伊東 圭・吉村 一貴 発 表 者
47 砂塵を考慮した砂丘のCGシミュレーション伊藤 彰朗48 噴水のCGシミュレーションの改良佐藤 一真49 CGによる鳥の詳細表現法佐藤 翔50 CGのための鳥のはばたき計算法に関する検討伊藤 薫51 CGによるペーパープレーンの飛行シミュレーション岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ボスター 題名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポスター 題名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論のエレベータ群管理システムへの応用に関する研究 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 村岡 一信 研究室 番号 ポスター 題名 3 雲景観のCGシミュレーション 44 オーロラのビジュアルシミュレーション	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 真也·佐森 隆宜 増垣 洋赤介·堺・田畑 雄太 発 表 者 小野 誠・熊木 健将 古城 吉孝 小山 将史 遠藤 弘志・大場 政洋・片山 満彦 浅野 達也・伊東 圭・吉村 一貴 発 表 者
49 CGによる鳥の詳細表現法佐藤 翔50 CGのための鳥のはばたき計算法に関する検討伊藤 薫51 CGによるペーパープレーンの飛行シミュレーション岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポスター 題名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポスター 題名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論のまレベータ群管理システムへの応用に関する研究 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 村岡 一信 研究室 番号 ポスター 題名 31 32 33 33 34 34 34 34 35 35	志摩 慶治·菊池 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石門馬 真也·佐 薩 隆文 石垣 洋 一郎・田畑 雄太 発 表 者 小野 誠・熊木 健将 古城 吉孝 小山 将史 遠藤 強・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
50 CGのための鳥のはばたき計算法に関する検討伊藤 薫51 CGによるペーパープレーンの飛行シミュレーション岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポスター 題名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポスター 題名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論のエレベータ群管理システムへの応用に関する研究 42 ファジィ理論を用いた都市ごみ焼却ブラント燃焼制御システムに関する研究 41 ファジィ理論を用いた都市ごみ焼却ブラント燃焼制御システムに関する研究 42 ファジィ理論を用いた都市ごみ焼却ブラント燃焼制御システムに関する研究 44 ファジィ理論を用いた都市ごみ焼却ブラント燃焼制御システムに関する研究 45 冬季景観表現のための氷柱の自動生成法 46 しなりを考慮した砂丘のCGシミュレーション 47 砂塵を考慮した砂丘のCGシミュレーション 47 砂塵を考慮した砂丘のCGシミュレーション	志摩 憲治・対 重人 川村 卓大・小野寺 孝輔 遠末・大川口 聡 星 充・金子 雄祐 児玉 寛人・梅内 勇気 発 表 者 石幡 哲也・佐 存 隆 直
51 CGによるペーパープレーンの飛行シミュレーション 岩山 慎吾	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポスター 題名 33 熟光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポスター 題名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論のエレベータ群管理システムへの応用に関する研究 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 41 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 41 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 44 大学で表演してがの詳細ではませんという言とは表している音楽は表現のための外柱の自動生成法 45 とりを考慮した砂丘のでGジミュレーション 48 噴水のCGシミュレーションの改良	志摩 憲治·執知 重人 川村 卓大·小野寺 孝輔 遠藤 寛士·大川口 聡 星 充·金子 雄祐 児玉 寛人·梅内 勇気 発 表 者 石幡 哲也·佐存 隆文 石門馬 真也·佐藤 隆文 石 洋 雄一郎・田畑 雄太 発 表 者 小野 誠・熊木 健将 古中 東土・古村 一貴 発 表 者 相澤
	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 30 リッジPPLN光導波路による波長変換特性の研究 31 二光子吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ボスター 題名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドドロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ボスター 題名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論のエレベータ群管理システムへの応用に関する研究 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 43 雲景観のCGシミュレーション 44 オーロラのビジュアルシミュレーション 45 冬季景観表現のための氷柱の自動生成法 46 しなりを考慮した砂丘のCGシミュレーション 48 噴水のCGシミュレーションの改良 49 CGによる鳥の詳細表現法	志摩 憲治・菊池 重人 川村 卓大・小野寺 孝輔 遠藤 寛士・大川口 聡 星 充・金子 雄祐 児玉 寛人・梅内 勇気 発 表 者 石幡 哲也・佐 存 隆 在 を 下
92 ―粣早のトフ1にノソンミュレーダ 尚儁 止ਥ	28 高非線形単 ーモード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 31 コー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	志摩治·執知野寺 郡 重人 川村 東京・本村 東京・大川 東京・金子 本村 東京・金子 本村 東京・金子 本村 東京・金子 本村 東京・金子 本村 東京・佐藤 山川 東京・本 大 田畑 本本 一 大 東 東京・ 大 東 東京・ 大 明 東京・ 大 東京・
	28 高非線形単一モード光ファイバによる連続スペクトル発生 29 PPLN結晶を用いた光パラメトリック発振器による2波長発振の研究 31 コーステ吸収電流による超短光パルスの自己相関波形測定 32 ハイビジョン映像のPC間擬似実時間伝送に関する研究 野口 一博 研究室 番号 ポスター 題名 33 熱光学効果型光スイッチを用いた光信号レベル安定化回路の検討 34 ディジタル制御による熱光学効果型光スイッチの出力光レベル安定化 35 光フィルタを用いた波長多重光アドーロップ回路の検討 36 OTDRによる通常分散光ファイバの誘導ラマン散乱光発生状況の観測 37 誘導ラマン散乱光パルスを用いた波長分散測定 佐藤 光男 研究室 番号 ポスター 題名 38 ニューラルネットワークを用いた起床検知システムに関する研究 39 エキスパートシステムの医療分野への応用に関する研究 40 ファジィ理論の家電製品への応用に関する研究 41 ファジィ理論の家電製品への応用に関する研究 42 ファジィ理論のエレベータ群管理システムへの応用に関する研究 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 42 ファジィ理論を用いた都市ごみ焼却プラント燃焼制御システムに関する研究 44 オーロラのビジュアルション 44 オーロラのビジュアルション 45 冬季景観表現のための氷柱の自動生成法 46 しなりを考慮したやのにのこのではまたまに関する検討 50 CGのための鳥のはばたき計算法に関する検討 50 CGのための鳥のはばたき計算法に関する検討 51 CGによるペーパープレーンの飛行シミュレーション	志摩 きない ままま は できない ままま は できない は できない ままま は できない ままま は できない ままま から は できない ままま は できない まままま は できない ままままま は できない ままままま は できない まままままままま は できない まままままままままままままままままままままままままままままままままままま

氏家 宏 研究室	
番号 ポスター 題名	発表者
1 空洞共振器列スロットアレイの広帯域化に関する研究	佐久間 信
2 マイクロ波LANサーバ用誘電体平板アンテナ	佐藤 智明
3 広角放射LANサーバ用誘電体平板アンテナ	金子 真之
4 誘電体双曲線レンズアンテナの試作と測定	田澤 直道
5 至近距離用ヘリカルアンテナ 一放射パターンの回転対称性の検討—	相原 加奈
5 至近距離用ヘリカルアンテナ ―放射パターンの回転対称性の検討― 6 至近距離用導体テープヘリカルアンテナ ―放射特性のテーブ幅依存性の検討―	岩木 裕右也
7 バイフォーカルレンズアンテナの設計に関する研究	小野寺 拓也
8 導波管ハイブリッド結合空洞共振器列スロットアレイ	倉島 大
9 円-楕円型誘電体レンズアンテナの試作と測定	金野 涼
10 アルキメデススパイラルアンテナの試作と測定	佐藤 賢治
番号 ポスター 題名	発表者
11 テーパ導波管漏れ波レンズの電磁界集束性に関する研究	曽根 猛•石井 翔平
12 テーパ導波管を用いた中央給電対称型漏れ波レンズに関する研究	武田 智也・岡本 匡平
13 テーパ導波管を用いた平面構造漏れ波レンズに関する研究	切岸 智紀・佐藤 裕太・村山 健二
14 テーパスロットによる導波管漏れ波レンズの集束性改善に関する研究	阿部 敬太・鈴木 智也
15 年数の経たアナログ測定データ修復に関する研究	沢田 亨
松田 勝敬 研究室	1
松田 勝敏 切孔至	発表者
<u>番号 バース ターー 題 石</u> 16 バスマップ情報のXMLによる記述に関する研究	田中亮
17 XMLデータベースを用いたWebによるバスマップシステムの開発	大類 圭司
18 RDBによるバスマップ情報閲覧システムの研究・開発	伊藤文佳
19 トラフィック増大時における緊急地震速報通信のロバスト性の検討	三塚 聖明
20 L2通信によるネットワークセキュリティシステムの研究・開発	佐々木 宏幸
21 ネットワークマイコンボードによる遠隔モータ制御の研究・開発	作間 俊哉
22 無線LAN台車における動画通信の検討	斎藤 和樹
23 マイコンセキュリティ端末のセンサ情報処理の検討	工藤睦
24 ネットワークマイコンボードによる瞬間停電検知システムの開発	正
	HE I AM
<u>木戸 博 研究室</u> 番号 ポ ス タ ー 題 名	
<u> </u>	発表者 斎藤達郎
26 マウスのみで操作可能な音声合成アプリケーションの構築 27 実環境下におけるSS法を用いた雑音除去の効果	相原 朗彦·武藏 和彦 佐藤 繁
28 直達音声と電話音声の聴取印象の差異 — 一対比較による導出 —	安住 真・佐藤 史彰
29 聴取による足音判別の可能性について	加藤 猛
30 信号検出理論を用いた記憶における時間変化の分析	永田 雅喜
31 CUIで処理できる音声分析プログラムの制作	奥山英明
32 ピークピッキング法によるフォルマント抽出	佐々木 伸幸
33 自己相関法によるピッチ抽出	大内 季宗
<u></u>	[XI:1 ± W
瀬戸正弘 研究室	1 20 ± ±
番号 ポスター 題名	発表者
34 活断層近辺における全磁力による比抵抗測定	渡辺 貞利 高田 健
35 VLF法による地下比抵抗構造について 36 放送波法による地下比抵抗構造について	高橋 啓太
37 環境都市雑音電波の測定と解析	高橋 和也
38 送電線による環境磁界変動	村上 雅人・高橋 正斗
39 地震発生に伴うELF帯磁界変動	中田 健太
中川 朋子 研究室	1 20 ± ±
番号 ポスター 題名	発表者
40 太陽風磁気ロープの可視化	鈴木 雅之・後村 明秀
41 地球磁気圏尾部における磁気リコネクションの発生域 42 地球磁気圏近尾部における磁気リコネクションによるスローショック	板垣 翔平·草野 諒·須藤 康次 咲山 修一
42 地球磁気圏近尾部における磁気サゴイグクョンによるスロークョック 43 人工衛星「あけぼの」軌道上における電子を加速させる電場の発生位置	
43 人工開生すめけなり] 乳追工における电子を加速させる电場の光生位置 44 月齢と地磁気の関連	中山 研仁
小川 淑人 研究室	
番号 ポスター 題 名	発表者
45 EclipseによるGasketの描画	加藤雄佑・中澤慧乘
46 JAVA言語を用いた自己相似するフラクタル図形の描画及びその特徴の考察	菊池 祐輔·小田嶋 裕太
水野 尚 研究室	
番号 ポスター 題 名	発表者
47 nクイーンゲームの作成	柏木 佳佑・鈴木 慎吾
47 nクイーンゲームの作成 48 積み上げ型四目並ベゲームの作成	柏木 佳佑·鈴木 慎吾 川口 和也·門間 広大
47 nクイーンゲームの作成 48 積み上げ型四目並ベゲームの作成 49 立体四目並ベゲームの作成	柏木 佳佑·鈴木 慎吾 川口 和也·門間 広大 和賀 傑
47 nクイーンゲームの作成 48 積み上げ型四目並ベゲームの作成 49 立体四目並ベゲームの作成 50 2進演算を実現するニューラルネットワークの構築と可視化	柏木 佳佑·鈴木 慎吾 川口 和也·門間 広大 和賀 傑 道川屋 智行·渡邊 俊介
47 nクイーンゲームの作成 48 積み上げ型四目並ベゲームの作成 49 立体四目並ベゲームの作成	柏木 佳佑·鈴木 慎吾 川口 和也·門間 広大 和賀 傑